
Performance of Precoded Integer-Forcing for

Closed-Loop MIMO Multicast

Elad Domanovitz

Dept. of EE-Systems, Tel Aviv University

Tel Aviv, Israel

Email: domanovi@eng.tau.ac.il

Uri Erez

Dept. of EE-Systems, Tel Aviv University

Tel Aviv, Israel

Email: uri@eng.tau.ac.il

Abstract—The integer-forcing receiver architecture has re-
cently been proposed as a high-performance, yet low-complexity,
equalization scheme, that is applicable when all data streams
are encoded with the same linear code. It was further shown
in [1], that this receiver architecture, when coupled with space-
time linear precoding is able to achieve the capacity of the open-
loop multiple-input multiple-output channel, up to a constant gap
that depends only on the number of transmit antennas. The gap,
however, is quite large and thus provides performance guarantees
that are useful only for high values of capacity. In this work, we
consider the problem of multicast over multiple-input multiple-
output channels to a modest number of users, and with space-only
linear precoding. It is assumed that channel state information is
available to the transmitter, allowing it to optimize the precoding
matrix so as to maximize the achievable transmission rate. It is
numerically demonstrated that this architecture allows to very
closely approach the multicast capacity at all transmission rates
regimes.

I. INTRODUCTION

The Multiple-Input Multiple-Output (MIMO) Gaussian

channel has been the focus of extensive research efforts since

the pioneering works of Foschini [2], Foschini and Gans [3],

and Telatar [4]. The multi-user MIMO Gaussian channel, i.e.,

the MIMO Gaussian broadcast channel, has also been widely

studied for over a decade now. See, e.g., [5] for an overview.

When a different message is to be transmitted to each of

the users (the private message case), the capacity region may

be achieved via dirty-paper coding, practical implementations

of which have been designed. See, e.g., [6].

In this work we consider, in contrast, the MIMO multicast

problem, where the transmitter sends a common message to

all users. This scenario is also referred to as common message

broadcast.

In contrast to the single-user case, the number of data

streams, constellation size, and other transmission parameters

cannot be tailored to a specific user and can only depend on

capacity. This makes the task of code design for MIMO mul-

ticast challenging. The present work demonstrates that these

challenges are successfully met via precoded integer-forcing

(IF) combined with successive interference cancellation (SIC).

We now describe the channel model more formally. A

transmitter equipped with M transmit antennas wishes to send

the same message to K users, where user i is equipped with

Ni antennas. Denoting by Hi the Ni × M channel matrix

corresponding to the ith user (and by H = {H}Ki=1 the set of

channels), the received signal at user i is

yi = Hix+ z, (1)

where the input vector x is subject to the power constraint

E(xHx) ≤ M · SNR, (2)

and the additive noise z is a vector of i.i.d. unit variance

circularly symmetric complex Gaussian random variables.We

consider throughout a closed-loop scenario where the channel

state information (CSI) is available at both transmission ends.

The multicast capacity is defined as the compound channel

capacity of (1). It is attained by a Gaussian vector input,

where the mutual information is maximized over all covariance

matrices Q satisfying Tr(Q) ≤ M · SNR:
C(SNR,H) = max

Q:Tr(Q)≤M·SNR

min
H∈H

log det(I+HHQH). (3)

In the sequel, we study the achievable rate, denoted by

R(SNR,H), for several transmission schemes. As a figure of

merit we consider a scheme’s efficiency which we define as

the fraction of the compound capacity achieved

η(SNR,H) =
R(SNR,H)

C(SNR,H)
. (4)

We present a practical transceiver architecture that is able to

approach the MIMO multicast capacity for a moderate number

of users using linear pre- and post- processing operations

in conjunction with the recently introduced integer-forcing

receiver architecture [7].

Note that multicast to a large number of users essentially

reduces to transmission with no CSI (beyond target rate) when

the number of users tends to infinity. In such a scenario, open-

loop techniques should be used. Therefore, our main concern

in this work is multicast to a moderate number of users.

There are several special cases where known linear mod-

ulation techniques achieve the multicast capacity (3) when

coupled with codes designed for a scalar additive white

Gaussian noise (AWGN) channel. For a single receive antenna,

any number of transmit antennas, and two users, beamforming

achieves the multicast capacity (see [8]). For a single receive

antenna, two transmit antennas and any number of users,
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Alamouti modulation coupled with a linear precoding matrix

(shaping the covariance matrix to maximize (3)) achieves the

multicast capacity.

Alamouti modulation results in an equivalent scalar channel

with no loss in mutual information (see, e.g., [9]) and is thus

ideal in terms of combining it with standard coding. Alamouti

modulation is generalized (see, e.g., [10]) to any number of

transmit antennas by Orthogonal Space-Time Block Codes

(OSTBC). Unfortunately, except for the case of 1× 2 MIMO

channels, OSTBC modulation results in a reduced symbol rate

which amounts to under utilization of the degrees of freedom

afforded by the channel. Consequently, in all cases other than

1 × 2 channels, OSTBC modulation incurs a loss in mutual

information. Nonetheless, it can be shown that at low SNR

and when coupled with a linear precoding matrix (shaping

the covariance matrix to be optimal), OSTBC modulation

approaches the multicast capacity.

In a recent work [1], a practical transmission scheme for

open-loop MIMO transmission was proposed, that achieves

the mutual information (corresponding to a scaled identity

input covariance matrix) up to a constant gap, for any MIMO

channel having the same mutual information. The scheme

utilizes only standard scalar AWGN codes in conjunction with

linear pre- and post-processing and the IF receiver architecture

[7]. As the open-loop scenario may be viewed as the limit

of many users, the results are applicable also for the closed-

loop scenario and serve as the starting point of the present

work. The approach of [1] and a description of the IF receiver

architecture is outlined in Section II. We note that in [1] linear

preprocessing over both space and time is applied. This is

essential for open-loop transmission (or when the number of

users is large). In this work, in contrast, we apply space-only

pre-processing.

The main weakness of the results of [1] is that the guar-

anteed gap to capacity is quite large and does not provide

meaningful performance guarantees at moderate transmission

rates.

The aim of the present work is to remedy this drawback by

demonstrating numerically that in a closed-loop scenario with

a moderate number of users, precoded-IF allows to closely

approach the multicast capacity at all transmission rates.

II. BACKGROUND: SINGLE-USER INTEGER-FORCING

EQUALIZATION WITH SIC

For ease of notation, throughout this section, we assume

without loss of generality that the input covariance matrix is

the identity matrix.1

In [7], a receiver architecture scheme coined “integer forc-

ing” was proposed which we next briefly describe. It is

assumed that information bits are fed into M encoders, each

of which uses the same scalar AWGN linear code. The latter

produce M channel inputs (for example, xm for the m’th

1We may do so since the covariance shaping matrix Q1/2 may be absorbed
into the channel by defining the effective channel H̄ = HQ1/2. With a slight
abuse of notation we use H to denote the effective channel.

antenna).2 At the receiver, a linear equalization matrix BINT

is applied, where BINT is designed such that the resulting

equivalent channel A = BINTH is a matrix all of whose

entries are integers. This ensures that the output of the channel

(without noise) after applying a modulo operation is a valid

codeword. In the basic version of IF, each of the equalized

streams is next passed to a standard (up to the additional

element of a modulo operation) AWGN decoder which tries

to decode a linear combination of codewords vm = am

Tx.

For IF equalization to be successful, decoding over all M

subchannels should be correct. Therefore, the worst subchan-

nel constitutes a bottleneck. When using MMSE equalization

BINT = AHT

(

1

SNR
I+HHT

)−1

, (5)

the input for the m’th decoder is

˜yeff,m = vm + zeff,m

where

zeff,m = (bTmH− aT
m)x+ bTmz.

This means that we can define the effective SNR at the m’th

subchannel as

SNReff,m =
(

aT
m(I+ SNRHHH)−1am

)−1
,

and the effective SNR associated with the IF scheme as

SNReff = min
m=1,...,M

SNReff,m. (6)

By Theorem 3 in [7], transmission with IF equalization can

achieve any rate satisfying

RIF < M log(SNReff).

In this paper, we consider using a linear precoder at the

transmit side in conjunction with IF at the receiver side. We

further consider a generalized version of the IF equalizer that

incorporates also SIC.3 We will demonstrate its operation via

an example.

For our purposes, it will suffice to state the achievable rates

of IF-SIC and an operational description of its elements. The

reader is referred to [11] for the derivation, details and proofs.

Denoting by L the following Choleskey decomposition

Kzeffzeff
= A

(

I+ SNRHTH
)−1

AT = LLT (7)

and denoting by ℓm,m the diagonal entries of L, the achievable

rate with IF-SIC is [11]

RIF−SIC < M max
A

min
m=1,...,M

log

(

SNR

ℓ2m,m

)

. (8)

2For simplicity of notation the time index is suppressed since the block
length plays no role in our description. Of course, to approach capacity, one
needs to use a long block length.

3We note that IF-SIC may in general allow using different rates per stream.
We will nevertheless assume throughout that all streams are encoded via an
identical linear code and hence have the same rate.
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We describe the operation of the IF-SIC receiver, adopting

the nomenclature of [11]. First, calculate:

1) The optimal integer matrix A, i.e., the matrix maximiz-

ing (8).

2) The covariance matrix of the effective noise when using

an IF equalizer with the matrix A via (7).

3) The optimal SIC matrix R as:

R = diag(ℓ11, ..., ℓMM ) · L−1. (9)

4) The optimal linear front end processing matrix B:

B̃INT = RAHT

(

1

SNR
I+HHT

)−1

. (10)

The operation of the receiver is depicted in Figure 1, where

now BINT is to be understood as B̃INT. Note that this

change of linear post-processing is essential to guarantee

that the resulting noise variance is minimized. The output of

decoders 1, . . . ,m− 1 are multiplied by Rm,1, . . . , Rm,m−1,

respectively, and are then subtracted from the input to decoder

m.

Example 1: Consider the following 2 × 2 (real) MIMO

channel,

H =

[

−4.4352 −0.4028
−1.7784 −3.5037.

]

and assume that SNR = 1, so that

C = log(I+HHH) = 4 bits per real dimension.

The optimal integer matrix obtained by maximizing (8) is

A =

[

1 1
0 1

]

.

Applying standard IF as specified in (5) (with an optimal

front-end matrix B but without SIC) results in two streams

with rates r1 = 2.1954 and r2 = 1.7338. As the achievable

rate is dictated by the weaker stream, the scheme can support

a rate of

RIF = 2×min(r1, r2) = 3.4677.

Applying a SIC matrix

R =

[

1 0
−0.4210 1

]

results in improved rates r1 = 2.1954 and r2 = 1.8046,
computed via the decomposition (7) to find l1,1 and l2,2. A

total rate

RIF−SIC = 2×min(r1, r2) = 3.6093

is thus achievable. Finally, the operation A−1 (again, modulo

arithmetic is assumed) is applied.

Remark 1: In a practical system, the modulo operation

will likely be one-dimensional which introduces a loss of

up to log2
(

2πe
12

)

≈ 0.254 bits per real degree of freedom

(see, e.g., [12]). While the loss is significant for moderate

values of capacity, it turns out that in this regime, the modulo

operation is in fact not necessary. The performance achieved

when taking into account the loss due to a one-dimensional

modulo operation is addressed in Section III-C.

III. PRECODED INTEGER-FORCING EQUALIZATION FOR

CLOSED-LOOP MULTICAST

A. Problem Formulation

We evaluate the performance of IF-SIC equalization com-

bined with optimized precoding in a closed-loop multicast

setting. A single precoding matrix P = Q1/2U which is

composed of a covariance shaping matrix4 Q1/2 and a uni-

tary matrix U is applied at the transmitter, where Q is the

covariance matrix achieving the multicast capacity (3). Thus,

the resulting effective multicast channel is

yi = HiQ
1/2Ux+ z,

and the achievable rate is given by

RP−IF−SIC(SNR,H) = max
U,Q

min
H∈H

RIF−SIC(H). (11)

While applying a transformation U does not change the

covariance and thus has no effect on mutual information, it

greatly impacts the performance of IF-SIC equalization, and

is therefore one of the parameters to be optimized.

There are various figures of merit that may be used to

assess the performance of transmission schemes. In [1], the

worst-case performance of precoded IF-SIC was analyzed.

Here, we assess the performance statistically where the set of

channelsH is viewed as drawn from an ensemble of channels.

Each specific set of channels results in a different compound

capacity as well as in a different achievable rate. For a given

scheme, we define the outage efficiency associated with the

ensemble as

ηx%(SNR,M) = max
Ψ

Pr(η(SNR,M) < Ψ) = x%

where η is defined in (4). Thus, η0.1% = 0.9, means that the

evaluated scheme achieves 90% or more from the multicast

capacity with a probability of 0.999.

Due to the general lack of effective closed-loop MIMO mul-

ticast transmission techniques (see Section I), for comparison

purposes, we also evaluate the performance of several open-

loop methods. Specifically we consider Alamouti modulation

(which is the OSTBC modulation for two transmit antennas

and, as mentioned above, achieves the multicast capacity at

very low SNR) and precoding using the golden code [13]

coupled with the IF-SIC receiver.5

The achievable IF-SIC rates are first presented without

accounting for modulo loss (or equivalently, assuming an

4Without loss of generality, we define Q1/2 as the (unique) positive-
semidefinite square root of Q.

5As was shown in [7], standard linear receivers (zero-forcing (ZF), mini-
mum mean square error (MMSE)), as well as their SIC variants, are special
cases of IF. Therefore, by definition the performance of IF out-performs the
performance of these basic linear receivers and therefore they are excluded
from the comparison.
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Fig. 1. Precoded-IF-SIC scheme.

optimal high-dimensional modulo operation). The impact of

using a one-dimensional modulo operation is discussed in

Section III-C.

B. Numerical Results

We consider a communication scenario where both the

transmitter and receiver have two antennas (2 × 2 MIMO

channels). We performed numerical optimization to find an

optimal precoding matrix for the case of two or three users.

We focused our attention on low and medium SNR values.

Two ensembles were considered.

Ensemble I - Rayleigh fading: all matrix entries are

circularly-symmetric complex normal random variables and

are drawn independently of each other. For a given SNR,

each set of channels has its own multicast capacity. For this

ensemble, we plot the outage efficiency as a function of SNR.

Ensemble II - Equal WI-MI with uniform distribution

on singular values: the channel for each user is drawn from

an ensemble of equal white-input mutual information (WI-MI).

The elements in this ensemble can be described as

H = V1

[

σ̃1 0
0 σ̃2

]

V2

where σ̃i =
√
SNRσi (the SNR can be absorbed into the

channel’s singular values). The WI-MI of a single user is

defined as

C = log(|I+ SNRHHH|)
= log(1 + σ̃1

2)(1 + σ̃2
2). (12)

For a given value of C, the ensemble is generated by drawing

σ̃1
2 uniformly in [0, 2C − 1], calculating σ̃2

2 via (12), and

then multiplying the diagonal matrix by two random matrices

V1,V2.
6 For this ensemble, we plot the performance as a

function of WI-MI.

6The matrices V1,V2 are drawn from the ”circular unitary ensemble”.
See, e.g., [14].

0 1 2 3 4 5 6 7 8 9 10
0

10

20

30

40

50

60

70

80

90

100

SNR (dB)

η
0
.1
%

 

 

2 Users P−IF−SIC

2 Users Alamouti

2 Users Golden−IF−SIC

3 Users P−IF−SIC

3 Users Alamouti

3 Users Golden−IF−SIC

Fig. 2. Outage efficiency for 2 × 2 channels drawn from ensemble I with
outage probability of 0.001.

Fig. 2 depicts η0.1% for users drawn from ensemble I. We

note that in the case of two users, precoded IF-SIC suffers

only negligible loss w.r.t. capacity. In the three-user case, the

gap is more noticeable at small values of SNR. Nonetheless,

for an outage probability of 0.1%, the greatest loss in the SNR

regime of interest is still no more than 10% of capacity. In both

cases, precoded IF-SIC significantly outperforms the reference

schemes. Fig. 3 depicts η0.1% for users drawn from ensemble

II. Finally, we tested the degradation in performance as the

number of users grows. Fig. 4 shows the outage efficiency of

precoded IF-SIC for ensemble II at a WI-MI of 4 bits (per

complex dimension) as a function of the number of users.

As expected, the loss w.r.t. the multicast capacity increases

as the number of users increases. Nevertheless, even for large

number of users, the 0.1% outage efficiency is much higher

than the performance achievable via open-loop precoding (i.e.,

Alamouti and golden code precoding).
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Fig. 3. Outage efficiency for 2 × 2 channels drawn from ensemble II with
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Fig. 5. Outage efficiency for 2 × 2 channels drawn from ensemble II with
outage probability of 0.001, where a one-dimensional modulo operation is
performed.

C. Effect of shaping gain

As mentioned above, the simplest implementation of IF-

SIC is to use a scalar (one-dimensional) modulo operation.

This results in a loss of up to 0.254 bits per real dimen-

sion. We now account for this (possible) loss, depicting the

achievable rate for the WI-MI ensemble. As a reference, we

consider the special case of an IF-SIC receiver which uses

an equivalent channel of the form AINT = I (e.g., [15]). In

this case, no modulo operation is required (since the input

to the receivers is not a linear combination of codewords,

but rather simply the transmitted codewords). Fig. 5 depicts

the resulting performance for both methods, for the case of

two users. We note that precoded IF-SIC, employing a one-

dimensional modulo operation, outperforms the performance

of the restricted (modulo-free) version IF-SIC for values of

WI-MI greater than 4 bits per complex dimension.
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